中国大陆 台湾 香港/澳门 返回首页
IBM在线课程
首页>IBM在线课程>课程信息

Advanced Predictive Modeling Using IBM SPSS Modeler (v18.1.1) SPVC

课程编号
Course Code
0E038G 课程级别
Skill Level
中级 课程分类
Curricula
SPSS 面授课程编号
Face2Face
Course Code
授课语言
Language
英文 上机实验
Hands-on Labs
价格 (元)
Price
¥ 1850        时      长
Duration
1D
课程描述/Course Description:
This course presents advanced models to predict categorical and continuous targets. Before reviewing the models, data preparation issues are addressed such as partitioning, detecting anomalies, and balancing data. The participant is first introduced to a technique named PCA/Factor, to reduce the number of fields to a number of core fields, referred to as components or factors. The next units focus on supervised models, including Decision List, Support Vector Machines, Random Trees, and XGBoost. Methods are reviewed to combine supervised models and execute them in a single run, both for categorical and continuous targets.
授课对象/Target Audience:
• Business Analysts • Data Scientists • Users of IBM SPSS Modeler responsible for building predictive models
预备技能/Prerequisites:
• Familiarity with the IBM SPSS Modeler environment (creating, editing, opening, and saving streams). • Familiarity with basic modeling techniques, either through completion of the courses Predictive Modeling for Categorical Targets Using IBM SPSS Modeler and/or Predictive Modeling for Continuous Targets Using IBM SPSS Modeler, or by experience with predictive models in IBM SPSS Modeler.
课程目标/Skills Taught:
Please refer to course overview
主要课题/Course Outline:
1. Preparing data for modeling • Address general data quality issues • Handle anomalies • Select important predictors • Partition the data to better evaluate models • Balance the data to build better models 2. Reducing data with PCA/Factor • Explain the idea behind PCA/Factor • Determine the number of components/factors • Explain the principle of rotating a solution 3. Creating rulesets for flag targets with Decision List • Explain how Decision List builds a ruleset • Use Decision List interactively • Create rulesets directly with Decision List 4. Exploring advanced supervised models • Explain the principles of Support Vector Machine (SVM) • Explain the principles of Random Trees • Explain the principles of XGBoost 5. Combining models • Use the Ensemble node to combine model predictions • Improve model performance by meta-level modeling 6. Finding the best supervised model • Use the Auto Classifier node to find the best model for categorical targets • Use the Auto Numeric node to find the best model for continuous targets